Fabrication and Characterization of a CMOS-MEMS Humidity Sensor
نویسندگان
چکیده
This paper reports on the fabrication and characterization of a Complementary Metal Oxide Semiconductor-Microelectromechanical System (CMOS-MEMS) device with embedded microheater operated at relatively elevated temperatures (40 °C to 80 °C) for the purpose of relative humidity measurement. The sensing principle is based on the change in amplitude of the device due to adsorption or desorption of humidity on the active material layer of titanium dioxide (TiO2) nanoparticles deposited on the moving plate, which results in changes in the mass of the device. The sensor has been designed and fabricated through a standard 0.35 µm CMOS process technology and post-CMOS micromachining technique has been successfully implemented to release the MEMS structures. The sensor is operated in the dynamic mode using electrothermal actuation and the output signal measured using a piezoresistive (PZR) sensor connected in a Wheatstone bridge circuit. The output voltage of the humidity sensor increases from 0.585 mV to 30.580 mV as the humidity increases from 35% RH to 95% RH. The output voltage is found to be linear from 0.585 mV to 3.250 mV as the humidity increased from 35% RH to 60% RH, with sensitivity of 0.107 mV/% RH; and again linear from 3.250 mV to 30.580 mV as the humidity level increases from 60% RH to 95% RH, with higher sensitivity of 0.781 mV/% RH. On the other hand, the sensitivity of the humidity sensor increases linearly from 0.102 mV/% RH to 0.501 mV/% RH with increase in the temperature from 40 °C to 80 °C and a maximum hysteresis of 0.87% RH is found at a relative humidity of 80%. The sensitivity is also frequency dependent, increasing from 0.500 mV/% RH at 2 Hz to reach a maximum value of 1.634 mV/% RH at a frequency of 12 Hz, then decreasing to 1.110 mV/% RH at a frequency of 20 Hz. Finally, the CMOS-MEMS humidity sensor showed comparable response, recovery, and repeatability of measurements in three cycles as compared to a standard sensor that directly measures humidity in % RH.
منابع مشابه
Characterization and optimization of Seals-Off for Very Low Pressure Sensors (VLPS) Fabricated by CMOS MEMS Process
In the world of MEMS processing today, fabrications of membrane are performed using bulk micromachining (BMM). However these techniques not easiest to integrate with CMOS standard process due to not compatible of the processing flow. An attractive alternative deployment of surface micromachining (SMM). There is a trend to use surface micromachining to their advantage of simplicity in design and...
متن کاملFabrication and Characterization of Polyaniline/PVA Humidity Microsensors
This study presents the fabrication and characterization of a humidity microsensor that consists of interdigitated electrodes and a sensitive film. The area of the humidity microsensor is about 2 mm(2). The sensitive film is polyaniline doping polyvinyl alcohol (PVA) that is prepared by the sol-gel method, and the film has nanofiber and porous structures that help increase the sensing reaction....
متن کاملA Surface Micromachined CMOS MEMS Humidity Sensor
This paper reports a CMOS MEMS (complementary metal oxide semiconductor micro electromechanical system) piezoresistive humidity sensor fabricated by a surface micromachining process. Both pre-CMOS and post-CMOS technologies were used to fabricate the piezoresistive humidity sensor. Compared with a bulk micromachined humidity sensor, the machining precision and the sizes of the surface micromach...
متن کاملMEMS Capacitive Relative Humidity Sensor Design, Fabrication, and Characterization
The motivating principle behind this research is the development of a small, wearable sensor that would use humidity and temperature measurements as metrics for health monitoring. We have successfully fabricated macro-scale devices via pressing of a polymer between two aluminum plates, and the responses of these capacitors were tested in various humidity conditions. The transition from macro to...
متن کاملFabrication and Characterization of a New MEMS Capacitive Microphone using Perforated Diaphragm
In this paper, a novel single-chip MEMS capacitive microphone is presented. The novelties of this method relies on the moveable aluminum (Al) diaphragm positioned over the backplate electrode, where the diaphragm includes a plurality of holes to allow the air in the gap between the electrode and diaphragm to escape and thus reduce acoustical damping in the microphone. Spin-on-glass (SOG) was us...
متن کامل